GPU surface extraction using the closest point embedding

نویسندگان

  • Mark Kim
  • Charles D. Hansen
چکیده

Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Fluid Effects on Surfaces using the Closest Point Method

The Closest Point Method (CPM) is a method for numerically solving partial differential equations (PDEs) on arbitrary surfaces, independent of the existence of a surface parametrization. The CPM uses a closest point representation of the surface, to solve the unmodified Cartesian version of a surface PDE in a 3D volume embedding, using simple and well-understood techniques. In this paper we pre...

متن کامل

Closest Point Query among the Union of Convex Polytopes Using Rasterization Hardware

We present a novel approach using rasterization hardware to perform the following query: Given a collection of convex polytopes in 3D, find the closest point from some given point inside the polytopes to the surface of the union of the polytopes. The algorithm takes advantage of multi-pass rendering, clipping and depth tests. We also demonstrate its application to penetration depth computation.

متن کامل

The Curvature-Augmented Closest Point Method with Vesicle Inextensibility Application

The Closest Point method, initially developed by Ruuth and Merriman, allows for the numerical solution of surface partial differential equations without the need for a parameterization of the surface itself. Surface quantities are embedded into the surrounding domain by assigning each value at a given spatial location to the corresponding value at the closest point on the surface. This embeddin...

متن کامل

Purification and Fractionation of Carbon Dots using pH-controlled Cloud Point Extraction Technique

In this work, we describe a simple, green and general procedure for the purification and fractionation of carbon dots (CDs). CDs coated with oxygen-containing functional groups were synthesized by thermal pyrolysis of citric acid. The product of the reaction was first Purified and then fractionated into two distinct kinds of CDs (f4 and f1) using pH-controlled cloud point extraction (CPE) techn...

متن کامل

Report Number 11/05 Solving Eigenvalue Problems on Curved Surfaces using the Closest Point Method by Colid

Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace–Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015